点击量 :
论文类型 : 期刊论文
论文编号 : 10.1016/j.measurement.2021.109274
发表时间 : 2021-03-22
发表刊物 : Measurement
收录刊物 :
SCI
所属单位 : 吉林大学
学科门类 : 工学
一级学科 : 机械工程
文献类型 : J
卷号 : 177
页面范围 : 1-12
ISSN : 0263-2241
关键字 : 非机构环境;点云配准;ICP;K-D树;PCA;曲率相似性
摘要 : In this paper, an improved iterative closest point (ICP) algorithm based on the curvature feature similarity of the point cloud is proposed to improve the performance of classic ICP algorithm in an unstructured environment, such as alignment accuracy, robustness and stability. A K-D tree is introduced to segment the 3D point cloud for speeding up the search of nearest neighbor points using principal component analysis for coarse alignment based on the classical ICP algorithm. In the curvature calculation process, discrete index mapping and templates are taken for sampling to simplify the point
是否译文 : 否