!tvu.isPriviewMode()true showstate0
!tvu.isPriviewMode()true showstate0

杨青春Qingchun Yang

(教授)
!tvu.isPriviewMode()true showstate0


学位:博士
性别:女
毕业院校:Universidad De A Coruna
学历:博士研究生毕业
在职信息:在职
所在单位:新能源与环境学院

学术论文

当前位置: 中文主页 >> 首页 >> 学术论文
SELECT tscustomcontentid,owner,tsaccount,tscontent,tspubuser,tsstate,tsdate FROM tscustomcontent WHERE (((owner=99) and (tsteatreeid=1010343)) and (tsstate=1)) and (tsstate<>-10) ORDER BY tscustomcontentid DESC

[1]    Yiwen Zhu, Qingchun Yang*, Hao Wang, Junwei Yang, Xunyu Zhang, Zijun Li, Jordi Delgado Martín. 2023. A hydrochemical and isotopic approach for source identification and health risk assessment of groundwater arsenic pollution in the central Yinchuan basin. Environmental Research, 231:116153. DOI:https://doi.org/10.1016/j.envres.2023.116153.

[2]    Xingyu Lu, Qingchun Yang*, Hao Wang, Yiwen Zhu. 2023. A global meta-analysis of the correlation between soil physicochemical properties and lead bioaccessibility. Journal of Hazardous Materials, 453:131440. DOI:https://doi.org/10.1016/j.jhazmat.2023.131440.

3]    Chang Tan, Hao Wang, Qingchun Yang*, Liyuan Yuan, Yuling Zhang, Jordi Delgado Martín. 2023. An integrated approach for quantifying source apportionment and source-oriented health risk of heavy metals in soils near an old industrial area. Environmental Pollution, 323:121271. DOI:https://doi.org/10.1016/j.envpol.2023.121271.

[4]    Han Gui, Qingchun Yang*, Xingyu Lu, Hualin Wang, Qingbao Gu, Jordi Delgado Martín. 2023. Spatial distribution, contamination characteristics and ecological-health risk assessment of toxic heavy metals in soils near a smelting area. Environmental Research, 222:115328. DOI:https://doi.org/10.1016/j.envre2023.115328. 

[5]    Hao Wang, Qingchun Yang*, Yiwen Zhu, Qingbao Gu, Jordi Delgado Martín. 2023. Speciation, in vitro bioaccessibility and health risk of antimony in soils near an old industrial area. Science of the Total Environment, 854:158767.

DOI: https://doi.org/10.1016/j.scitotenv.2022.158767.

[6]    Zijun Li, Qingchun Yang*, Chuan Xie, Hao Wang, Yanli Wang. 2022. Spatiotemporal characteristics of groundwater quality and health risk assessment in a river basin, Chinese Loess Plateau. Ecotoxicology and Environmental Safety, 238:114278.

DOI: https://doi.org/10.1016/j.ecoenv.2022.114278.

[7]    Chenghao Zhong, Hao Wang, Qingchun Yang*. 2022. Hydrochemical interpretation of groundwater in Yinchuan basin using self-organizing maps and hierarchical clustering. Chemosphere, 309:136787. DOI: https://doi.org/10.1016/j.chemosphere.2022.136787.

[8]    Zijun Li, Qingchun Yang*, Chuan Xie, Xingyu Lu. 2022. Source identification and health risks of nitrate contamination in shallow groundwater: A case study in Subei Lake basin. Environmental Science and Pollution Research

DOI: https://doi.org/10.1007/s11356-022-23129-y.

[9]    Qingchun Yang*, Liangmiao Zhang, Hualin Wang, Jordi Delgado Martín. 2022. Bioavailability and health risk of toxic heavy metals (As, Hg, Pb and Cd) in urban soils: A Monte Carlo simulation approach. Environmental Research, 214:113772.

DOI: https://doi.org/10.1016/j.envres.2022.113772.

[10] Hao Wang, Qingchun Yang*, Ji Liang. 2022. Interpreting the salinization and hydrogeochemical characteristics of groundwater in Dongshan island, China. Marine Pollution Bulletin, 179:113634. 

DOI: https://doi.org/10.1016/j.marpolbul.2022.113634.

[11] Liangmiao Zhang, Qingchun Yang*, Hao Wang, Qingbao Gu, Yuling Zhang. 2022. Genetic interpretation and health risk assessment of arsenic in Hetao Plain of Inner Mongolia, China. Environmental Research, 208:112680.   

DOI: https://doi.org/10.1016/j.envres.2022.112680.

[12] Chenghao Zhong, Qingchun Yang*, Ji Liang, Hongyun Ma. 2022. Fuzzy comprehensive evaluation with AHP and entropy methods and health risk assessment of groundwater in Yinchuan Basin, Northwest China. Environmental Research,204:111956.

DOI: https://doi.org/10.1016/j.envres.2021.111956.

[13] Hualin Wang, Qingchun Yang*, Hongyun Ma, Ji Liang. 2021. Chemical compositions evolution of groundwater and its pollution characterization due to agricultural activities in Yinchuan Plain, Northwest China. Environmental Research, 200:111449.

DOI: https://doi.org/10.1016/j.envres.2021.111449.

[14] Dongshuang Wang, Luchen Wang, Qingchun Yang*, Kun Yu, Hongyun Ma. 2021. Hydrogeochemistry assessment of shallow groundwater and human health threats in the Northwestern Ordos Basin, China. Archives of Environmental Contamination and Toxicology, 80:92-106. DOI: https://doi.org/10.1007/s00244-020-00804-0.

[15] Lujiao Ding, Qingchun Yang*, Yuesuo Yang, Hongyun Ma, Jordi Delgado Martin. 2021. potential risk assessment of groundwater to address the agricultural and domestic challenges in Ordos Basin. Environmental Geochemistry and Health, 43:717-732. DOI: https://doi.org/10.1007/s10653-019-00512-2.

[16] Zijun Li, Kun Yang, Chuan Xie, Qingchun Yang*, Xiaohui Lei, Hao Wang. 2021. Assessment of potential health risk for major contaminants of groundwater in a densely populated agricultural area. Environmental Geochemistry and Health, 43(2):663-682. DOI: https://doi.org/10.1007/s10653-019-00470-9.

[17] Qingchun Yang*, Zijun Li, Chuan Xie, Xiaohui Lei, Jordi Delgado Martín. 2020. Risk assessment of groundwater hydrochemistry for irrigation suitability in Ordos Basin, China. Natural Hazards, 101:309-325. DOI: https://doi.org/10.1007/s11069-018-3451-4.

[18] Zijun Li, Qingchun Yang*, Yuesuo Yang, Chuan Xie, Hongyun Ma. 2020. Hydrogeochemical controls on arsenic contamination potential and health threat in an intensive agricultural area, Northern China. Environmental Pollution, 256:113455.DOI: https://doi.org/10.1016/j.envpol.2019.113455.

[19] Ji Liang, Zijun Li, Qingchun Yang*, Xiaohui Lei, Aiqing Kang, Shanfei Li. 2019. Specific vulnerability assessment of nitrate in shallow groundwater with an improved DRSTIC-LE model. Ecotoxicology and Environmental Safety, 174(3):649-657. DOI:10.1016/j.ecoenv.2019.03.024.

[20] Zijun Li, Qingchun Yang*, Yuesuo Yang, Hongyun Ma, Hui Wang, Jiannan Luo, Jianmin Bian, Jordi Delgado Martin. 2019. Isotopic and geochemical interpretation of groundwater under the influences of anthropogenic activities. Journal of Hydrology, 576:685-697. DOI: https://doi.org/10.1016/j.jhydrol.2019.06.037.

[21] Qingchun Yang, Hao Wang, Haokun Mu, Jiannan Luo, Xinhua Bao*, Jianmin Bian, Jordi Delgado Martin. 2019. Risk assessment of water resources and environment carrying capacity in Yinchuan City. Human and Ecological Risk Assessment: An International Journal, 25(1-2):1-10. DOI: doi.org/10.1080/10807039.2019.1573134.

[22] Qingchun Yang, Haokun Mu, Junchun Guo, Xinhua Bao*, Jordi Delgado Martín. 2019. Temperature and rainfall amount effects on hydrogen and oxygen stable isotope in precipitation. Quaternary International, 519(10):25-31.DOI: https://doi.org/10.1016/j.quaint.2019.01.027.

[23] Chenghao Zhong, Qingchun Yang*, Hongyun Ma, Jianmin Bian, Sihong Zhang, Xiaoguang Lu. 2019. Application of environmental isotopes to identify recharge source, age, and renewability of phreatic water in Yinchuan Basin. Hydrological Processes, 33(16):2166-2173. DOI: https://doi.org/10.1002/hyp.13468.

[24] Shuo Yang, Qingchun Yang*, Hongyun Ma, Ji Liang, Cunwen Niu, Jordi Delgado Martin. 2018. Health risk assessment of phreatic water based on triangular fuzzy theory in Yinchuan Plain. Ecotoxicology and Environmental Safety, 164:732–738. DOI: https://doi.org/10.1016/j.ecoenv.2018.08.036

[25] Qingchun Yang, Haokun Mu, Hao Wang, Xueyan Ye*, Hongyun Ma, Jordi Delgado Martín. 2018. Quantitative evaluation of groundwater recharge and evaporation intensity with stable oxygen and hydrogen isotopes in a semiarid region, Northwest China. Hydrological Processes, 32(9):1130-1136. DOI: 10.1002/hyp.11474.

[26] H. Ma, Q. Yang*, L. Yin, X. Wang, J. Zhang, C. Li, J. Dong. 2018. Paleoclimate interpretation in Northern Ordos Basin: Evidence from isotope records of groundwater. Quaternary International, 467:204-209.DOI:https://doi.org/10.1016/j.quaint.2018.01.043.

[27] Qingchun Yang*, Jianing Zhang, Zeyu Hou, Xiaohui Lei, Wei Tai, Weiwei Chen, Tao Chen, Jordi Delgado Martin.  2017. Shallow groundwater quality assessment: Use of the improved nemerow Pollution Index, Wavelet Transform and Neural Networks. Journal of Hydroinformatics, 19(5):784-794. DOI: https://doi.org/10.2166/hydro.2017.224.

[28] H. Ma, Q. Yang*, L. Yin, et al., 2017. Isotopic implications for vapor-liquid infiltration pattern in the desert area of Ordos Plateau, China. Clean Soil Air Water, 45(5):1500718. DOI: 10.1002/clen.201500718.

[29] Qingchun Yang*, Luchen Wang, Hongyun Ma, Kun Yu, Jordi Delgado Martin. 2016. Hydrochemical characterization and pollution sources identification of groundwater in Salawusu aquifer system of Ordos Basin, China. Environmental Pollution, 216:340-349.DOI: https://doi.org/10.1016/j.envpol.2016.05.076.

[30] Zijun Li, Qingchun Yang*, Luchen Wang, Jordi Delgado Martín. 2016. Application of RBFN network and GM (1, 1) for groundwater level simulation. Applied Water Science, 7(6):3345-3353. DOI: 10.1007/s13201-016-0481-5.  

[31] Qingchun Yang*, Zijun Li, Hongyun Ma, Luchen Wang, Jordi Delgado Martín. 2016. Identification of the hydrogeochemical processes and assessment of groundwater quality using classic integrated geochemical methods in the southeastern part of Ordos Basin, China. Environmental Pollution, 218:879-888. DOI: https://doi.org/10.1016/j.envpol.2016.08.017.

[32] Q. Yang*, Y. Wang, J. Zhang, J. Delgado. 2015. A comparative study of shallow groundwater level simulation with three time series models in a coastal aquifer of South China. Applied Water Science, 7(2): 689-698. DOI: 10.1007/s13201-015-0282-2.

[33] H. Ma, Q. Yang*, L. Yin, et al. 2016. The identification of precipitation amount effect with a water isotope-enabled threshold model in vadose zone: A case study in Ordos Plateau. Environmental Earth Sciences, 75:922. DOI:https://doi.org/10.1007/s12665-016-5708-0.

[34] Q. Yang*, Z. Hou, Y. Wang, Y. Zhao, J. Delgado. 2015. A Comparative study of shallow groundwater level simulation with WA-ANN and ITS Model in a coastal island of South China. Arabian Journal of Geosciences, 8:6583–6593.DOI:https://doi.org/10.1007/s12517-014-1706-2.

[35] Q. Yang*, Y. Wang, J. Zhang, J. Delgado. 2015. Stochastic simulation of groundwater dynamics based on grey theory and seasonal decomposition model in a coastal aquifer of South China. Journal of Water Supply: Research and Technology–AQUA, 64(8):947-957. DOI: 10.2166/aqua.2015.047. 

[36] Qingchun Yang*, Jianing Zhang, Yanli Wang, Yanna Fang. 2015. Multivariate statistical analysis of hydrochemical data for shallow ground water quality factor identification in a coastal aquifer. Polish Journal of Environmental Studies, 24(2):769-776. DOI: https://doi.org/10.15244/pjoes/30263.

[37] J. Liang, Q. Yang*, T. Sun, J. D. Martín, H. Sun, L. Li. 2015. MIKE11 model-based water quality model as a tool for the evaluation of water quality management plans. Journal of Water Supply: Research and Technology–AQUA, 64(6):708-718. DOI: 10.2166/aqua.2015.048.

[38] Wei Lu, Qingchun Yang*, Jordi D. Martín, Ricardo Juncosa. 2013. A numerical modelling of seawater intrusion with a 3D density dependent model considering tidal effects. Journal of Earth System Science, 122(2):451-465. DOI:10.1007/s12040-013-0273-3.

[39] D. Karunanidhi, T. Subramani, K. Srinivasamoorthy, K. Shankar, Qingchun Yang, H. Chandra Jayasena. 2023. Coastal groundwater dynamics, environmental issues and sustainability: A synthesis. Marine Pollution Bulletin, 191:114973.DOI: https://doi.org/10.1016/j.marpolbul.2023.114973.

[40] Jili Wang, Yuling Zhang*, Qingchun Yang, et al. A starch-based controlled-release targeted nutrient agent to stimulate the activity of volatile chlorinated hydrocarbon-degrading indigenous microflora present in groundwater. Ecotoxicology and Environmental Safety, 114262. DOI: https://doi.org/10.1016/j.ecoenv.2022.114262.

[41] Karunanidhi, D.*, Subramani, T.*, Srinivasamoorthy, K., Yang, Q. 2022. Environmental chemistry, toxicity and health risk assessment of groundwater: Environmental persistence and management strategies. Environmental Research, 214:113884.DOI: https://doi.org/10.1016/j.envres.2022.113884.

[42] Li, Z., Lei, X., Liao, W.*, Yang, Q., Cai, S., Wang, X., Wang, C., Wang, J. (2021). Lake Inflow Simulation Using the Coupled Water Balance Method and Xin’anjiang Model in an Ungauged Stream of Chaohu Lake Basin, China. Frontiers in Earth Science, 9:615692. DOI: https://doi.org/10.3389/feart.2021.615692.

[43] Jiannan Luo*, Wenxi Lu, Qingchun Yang, Yefei Ji, Xin Xin. 2020. An Adaptive Dynamic Surrogate Model Using a Constrained Trust Region Algorithm: Application to DNAPL-contaminated-groundwater-remediation Design. Hydrogeology Journal, 28(4):1285-1298. DOI: 10.1007/s10040-020-02130-0.

[44] Jiayuan Guo, Wenxi Lu*, Qingchun Yang, Tiansheng Miao. 2019. The Application of 0-1mixed Integer Nonlinear Programming Optimization Model Based on a Surrogate Approach to the Identification of Groundwater Pollution Source. Journal of Contaminant Hydrology, 220:18-25. DOI: https://doi.org/10.1016/j.jconhyd.2018.11.005.

[45] X. Jiang, W. X. Lu*, H. Q. Zhao, Q. C. Yang, M. Chen. 2015. Quantitative Evaluation of Mining Geo-environmental Quality in Northeast China: Comprehensive Index Method and Support Vector Machine Models. Environmental Earth Sciences, 73 (12):7945–7955. DOI: https://doi.org/10.1007/s12665-014-3953-7.

[46] Y. Zhang Y, W. X. Lu*, Q. C. Yang. 2015. The Impacts of Mining Exploitation on the Environment in the Changchun-Jilin-Tumen Economic Area, Northeast China. Natural Hazards, 76(2):1019-1038. DOI: https://doi.org/10.1007/s11069-014-1533-5.

[47] Xue Jiang, Wenxi Lu*, Haiqing Zhao, Qingchun Yang, Zhongping Yang. 2014. Potential Ecological Risk Assessment and Prediction of Soil Heavy-metal Pollution around Coal Gangue Dump. Natural Hazards and Earth System Sciences,14(6):1599-1610. DOI:10.5194/nhess-14-1599-2014.

[48] Xue Jiang, Wenxi Lu*, Qingchun Yang, Haiqing Zhao. 2014. Application of Support Vector Machine in Soil Environmental Quality Assessment. Zhongguo Huanjing Kexue/China Environmental Science,34(5):1229-1235.

[49] Sun, Lina, Wenxi Lu*, Qingchun Yang, Zeyu Hou. 2013. Effect of Future Land Use Caused Change on the Non-point Source Pollution in Dongliao River Weatershed. Zhongguo Huanjing Kexue/China Environmental Science, 33(8):1459-1467.

[50] Sun, Lina, Lu, Wenxi*, Qingchun Yang, Delgado Martin, Jordi; Li, Di. 2013. Ecological Compensation Estimation of Soil and Water Conservation Based on Cost-Benefit Analysis, Water Resources Management, 27(8): 2709-2727. DOI: 10.1007/s11269-013-0268-5.

[51] J. Canal, J. Delgado*, I. Falcon, Q. Yang, R. Juncosa, V. Barrientos. 2013. Injection of CO2-saturated Water through a Siliceous Sandstone Plug from the Hontomin Test Site (Spain): Experiment and Modeling. Environmental Science and Technology, 47(1):159-167.DOI: 10.1021/es3012222.

[52] Li, Ping, Lu, Wenxi*, Jin, Menggui, Qingchun Yang. 2012. Approach to the Relation of Mutual-feed Joint-variation in Groundwater Management Model. Journal of Earth Science, 23(3):349-358. DOI: 10.1007/s12583-012-0261-6.

[53] Lei Zhang, Wenxi Lu*, Qingchun Yang, Yongkai An, Di Li, Lei Gong. 2012. Hydrological Impacts of Climate Change on Streamflow of Dongliao River Watershed in Jilin Province, China. Chinese Geographical Science, 22:522–530. DOI: https://doi.org/10.1007/s11769-012-0559-4.

[54] Z. Yang*, W. Lu, Y. Long, X. Bao, Q. Yang. 2011. Assessment of Heavy Metals Contamination in Urban Topsoil from Changchun City, China. Journal of Geochemical Exploration, 108(1):27-38. DOI: https://doi.org/10.1016/j.gexplo.2010.09.006.

[55] Q. Yang*, X. Zhang, J. Liang, J. Yang. 2010. Numerical Modelling for the Interpretation of a Laboratory Mock-up Experiment of Bentonite/Granite Interface. Procedia Environmental Sciences, 2:713–719. DOI:10.1016/j.proenv.2010.10.081.

[56] Q. Yang*, X. Zhang, Z. Yang, J. Liang. 2010. Numerical Model of a Long-term in Situ Diffusion and Retention (DR) Experiment in Opalinus Clay. Procedia Environmental Sciences, 2:937-944. DOI:10.1016/j.proenv.2010.10.105.

[57] J. Samper*, S. Dewonck, L. Zheng, Q. Yang, A. Naves. 2008. Normalized Sensitivities and Parameter Identifiability of In situ Diffusion Experiments on Callovo-Oxfordian Clay at Bure Site. Physics and Chemistry of the Earth, Parts A/B/C 33(14):1000-1008. DOI:10.1016/j.pce.2008.05.017.

[58] M. García-Gutiérrez, J.L. Cormenzana, T. Missana, M. Mingarro, U. Alonso, J. Samper*, Q. Yang, S. Yi, 2008. Diffusion Experiments in Callovo-Oxfordian Clay from the Meuse/Haute-Marne URL, France. Experimental Setup and Data Analyses. Physics and Chemistry of the Earth, Parts A/B/C, 33(Supp.1):S125-S130. 

DOI: https://doi.org/10.1016/j.pce.2008.10.019.

[59] J. Samper*, Q. Yang, S. Yi, M. García-Gutiérrez, T. Missana, M. Mingarro, Ú. Alonso, J.L. Cormenzana. 2008. Numerical Modeling of Large-scale Solid-source Diffusion Experiments in Callovo-Oxfordian Clay. Physics and Chemistry of the Earth, Parts A/B/C, 33(Supp.1):S208-S215. DOI:https://doi.org/10.1016/j.pce.2008.10.011.