【1】非平稳地震数据属性分析体系
提出“非平稳”地震数据的定义:将时变的混合地震数据定义为非平稳地震数据,其特征表现在地震信号的频率、轨迹、谱等模式以及随机信号的统计特征随时间和空间位置不同而变化,从数学和物理学角度统一了非平稳地震数据的定义。
图1 非平稳地震数据属性分析体系框图
【2】地震数据自适应预测滤波表征理论(http://gest.jlu.edu.cn/info/1109/6800.htm)
能量谱是描述地震数据的主要模式之一,预测误差滤波器在数学上是地震数据能量谱的逆,已经被证明可以有效地表征数据的能量谱。然而,实际地震数据的振幅和能量谱随着时空坐标变化,表现出明显的非平稳特征,传统的预测滤波技术只能处理平稳假设条件下的地震数据,在处理非平稳地震数据时受到极大的限制,准确表征非平稳地震数据能量谱的预测理论是现代地震数据分析的重要方向。结合地震波动理论、随机统计理论、自适应预测滤波理论和数学正则化反演理论,形成交叉学科研究框架,对非平稳地震复杂同相轴的局部能量表征进行了深入研究,在自适应预测滤波理论、技术和应用方面形成了完整的体系。
从平稳预测滤波的自回归数学问题出发,通过设计预测滤波器系数随着时间和空间坐标变化,建立非平稳自回归数学模型,选取较Tikhonov正则化计算特性更好的整形正则化条件,设计全局平滑条件约束数学欠定问题,通过最小二乘迭代算法计算时空变化的滤波器系数,实现自适应正则化预测滤波(APF)的非平稳地震数据能量谱高精度表征能力。针对基于迭代的自适应预测滤波技术在处理大规模地震数据时的计算速度慢和内存占用率高的问题,通过对自适应预测滤波的时空变自回归方程进行研究,建立了解决自适应预测滤波数学欠定反问题的局部平滑正则化约束条件,解耦滤波器参数依赖关系,基于逆矩阵非迭代的流式解析计算方法,实现时间-空间域高效流式预测滤波器(SPF),在有效表征非平稳地震数据能量谱的前提下,显著降低传统自适应预测技术难以避免的计算效率低下和海量非平稳预测滤波系数的全局存储问题,提高了工业实用价值。进一步,针对时间-空间域流式预测滤波精度依赖时间方向采样率的缺陷,提出可用于复数逆矩阵直接求解的非迭代扩展谢尔曼-莫里森计算方法,并且通过增加频率平滑约束条件以解决经典的频率域预测滤波技术中的“振幅震荡”问题,提出了频率-空间域快速流式预测滤波器,解决频率域非平稳地震数据能量谱表征问题中兼顾准确性和高效性的难点,为频率域自适应预测滤波在工业生产中的实用化提供了有效方案。