舒世立、副教授/博导,从事飞行器构件异质结构设计及激光制造。作为第一/通讯作者在Composites Part B: Engineering (IF=11.322), Materials & Design (IF=9.417), Opto-Electronic Advances (IF=8.933)等国际期刊上发表SCI论文30余篇;其中,中科院1区Top期刊论文21篇,ESI高被引论文2篇;获吉林省技术发明一等奖1项;获美国授权发明专利3项,获国家授权发明专利20余项,其中5项已成果转化;承担国家级项目3项,省部市级项目6项。担任 SCI 期刊《Metals》编委,教育部学位中心评审专家及10 余种 SCI 期刊审稿人;获评吉林省人才政策2.0版E类人才,入选吉林大学励新优秀青年教师培养计划(重点培养阶段)。
授课情况:
[1] 主讲本科生必修课《机械制造技术基础》
[2] 主讲研究生选修课《激光先进制造》
[3] 参与讲授本科生必修课《新生研讨课》
[4] 参与讲授本科生选修课《3D打印与实践》
[5] 参与讲授研究生选修课《宏微观增材制造》
指导本科生大创:
[1] 李越 等,基于啄木鸟头骨结构的钛铝减震起落架激光增材制造(省级);
[2] 李崇铭 等,基于激光增材制造的蜂窝夹层轮毂设计及其力学性能研究(省级);
[3] 谢舒宇 等,仿贝壳构型纳米颗粒强韧化铝合金增材制造(校级);
作为第一/通讯作者发表中科院1区Top期刊论文:
[1] Investigation on the elevated-temperature tribological behaviors and mehanism of Al-Cu-Mg composites reinforced by in-situ size-tunable TiB2-TiC particles, Tribology International, 2023, 177: 177943. (1区Top, IF=5.620)
[2] Instantaneous efficient microstructure manipulation of eutectic Al–Si alloy by trace in-situ nanoparticles and their mechanism in superior tensile properties, Materials Characterization, 2023, 199: 112755. (1区Top,IF=4.537)
[3] Microstructure manipulation and strengthening mechanism of TiAl composites reinforced by Cr solid solution and in-situ nanometer-sized TiB2 particles, Materials Science and Engineering: A, 2022, 845: 143214. (1区Top, IF=6.044)
[4] Multilevel Microstructure Control of Cast Al–7.0Si–4.0Cu Alloy with High Strength–toughness Synergy via Micro-alloying Combined with Manipulation by in-situ Nano-ceramics, Journal of Materials Research and Technology, 2022, 21: 3248-3261. (1区Top, IF=6.267)
[5] Role of V in microstructure and strength enhancement of 4 vol.% nano-TiB2/TiAl composites, Materials Science and Engineering: A, 2022, 861: 144342. (1区Top, IF=6.044)
[6] Interface formation and bonding control in high-volume-fraction (TiC+TiB2)/Al composites and their roles in properties enhancement, Composites Part B: Engineering, 2021, 209: 108605. (1区Top, IF=11.322, ESI高被引论文)
[7] Insight into solidification microstructure control by trace TiCN-TiB2 particles for yielding fine-tuned nanoprecipitates in a hypoeutectic Al-Si-Mg alloy, Materials Science and Engineering: A, 2021, 827: 142093. (1区Top, IF=6.044)
[8] Microstructure evolution and mechanical property enhancement of high-Cr hot work die steel manipulated by trace amounts of nano-sized TiC. Materials Science and Engineering A, 2021, 824: 141788. (1区Top, IF=6.044)
[9] Microstructural configuration and compressive deformation behavior of a TiAl composite reinforced by Mn and in situ Ti2AlC particles. Materials Science and Engineering A, 2021, 823: 141772. (1区Top, IF=6.044)
[10] Microstructure manipulation and strengthening mechanisms of 40Cr steel via trace TiC nanoparticles. Materials Science and Engineering A, 2021, 8 22: 141639. (1区Top, IF=6.044)
[11] Simultaneously improved strength and toughness of in situ bi-phased TiB2-Ti(C,N)-Ni cermets by Mo addition, Journal of Alloys and Compounds, 2020, 820: 153068. (1区Top, IF=6.371, ESI高被引论文)
[12] Strengthening mechanism of TiC/Al composites using Al-Ti-C/CNTs with doping alloying elements (Mg, Zn and Cu), Journal of Materials Research and Technology, 2020, 9(3): 6475-6487. (1区Top, IF=6.267)
[13] Effect of Ta addition on the microstructures and mechanical properties of in situ bi-phase (TiB2-TiCxNy)/(Ni-Ta) cermets, Ceramics International, 2019, 45: 4408-4417. (1区Top, IF=5.532)
[14] Progress of optically pumped GaSb based semiconductor disk laser, Opto-Electronic Advances, 2018, 1: 170003. (1区Top, IF=8.933)
[15] Effects of Fe, Co and Ni elements on the ductility of TiAl alloy. Journal of Alloys and Compounds, 2014, 617:302–305. (1区Top, IF=6.371)
[16] Comparative study of the compression properties of TiAl matrix composites reinforced with nano–TiB2 and nano–Ti5Si3 particles. Materials Science and Engineering A, 2013, 560: 596–600. (1区Top, IF=6.044)
[17] Effect of B4C size on the fabrication and compression properties of in situ TiB2–Ti2AlC/TiAl composites. Journal of Alloys and Compounds, 2013, 551:88–91. (1区Top, IF=6.371)
[18] Phase transitions and compression properties of Ti2AlC/TiAl composites fabricated by combustion synthesis reaction. Materials Science and Engineering A, 2012, 539: 344-348. (1区Top, IF=6.044)
[19] Compression properties and work-hardening behavior of Ti2AlC/TiAl composites fabricated by combustion synthesis and hot press consolidation in the Ti–Al–Nb–C system. Materials & Design, 2011, 32: 5061-5065. (1区Top, IF=9.417)
[20] High volume fraction TiCx/Al composites with good comprehensive performance fabricated by combustion synthesis and hot press consolidation. Materials Science and Engineering A, 2011, 528: 1931-1936. (1区Top, IF=6.044)
[21] Effects of alloy elements (Mg, Zn, Sn) on the microstructures and compression properties of high-volume-fraction TiCx/Al composites. Scripta Materialia, 2010, 63: 1209-1211. (1区Top, IF=6.302)
荣誉与获奖:
[1] 入选吉林大学励新优秀青年教师培养计划(重点培养阶段);
[2] 获评吉林省人才政策2.0版E类人才;
[3] 高功率高亮度半导体激光芯片及系统关键技术,吉林省技术发明一等奖(3/12);
[4] 高功率激光离轴外腔反馈光谱合束方法,长春光机所优秀成果奖(4/8);
[5] 高功率极低发散角圆形光束半导体边发射激光器,中国光学重要成果奖(4/10);
科研项目:
[1] 吉林省国际科技合作项目,内包覆纳米颗粒H3钢特种增材粉体开发及激光制造,2023/01-2025/12、项目负责人;
[2] 重庆市自然科学基金面上项目,纳米颗粒强韧化车用铝合金激光增材制造,2021/10-2024/09、项目负责人;
[3] 汽车国家重点实验室自由探索项目,轻量化车用高强韧镁合金纳米颗粒调控机制研究,2021/01-2023/10、项目负责人;
[4] 中国博士后科学基金面上项目,Ti5Si3-Nb/TiAl复合材料高强韧仿生结构设计与机制研究,2021/07-2023/06、项目负责人;
[5] 吉林省教育厅科技研究规划项目,内生纳米颗粒调控激光增材制造Al-Cu合金组织与性能研究,2021/01-2022/12、项目负责人;
[6] 吉林大学人才引进项目,航空航天用新型轻质高性能合金激光增材制造,2020/05-2025/05、项目负责人;
[7] 国家自然科学基金重大项目子课题,锑化物光谱合束阵列大功率激光器,2018/01-2022/12、项目骨干;
[8] 国家自然科学基金国际合作与交流项目,高亮度GaN基光子晶体激光器的研究,2018/01-2020/12、项目骨干;
[9] 中国科学院国际合作局对外合作重点项目,高速低功耗光子晶体面发射激光器,2017/01-2019/12、项目骨干;
[10] 国家自然科学基金青年基金项目,CNTs-TiC/Al梯度复合材料界面调控及封装应用中热稳定性研究,2016/01-2018/12、项目负责人;
[11] 吉林省科技创新人才培育计划项目,微/纳热管冷却百瓦级小体积半导体激光器模块研究,2014/01-2016/12、项目负责人;
吉林大学  博士
吉林大学  学士
吉林大学 副教授/博导
中国科学院长春光学精密机械与物理研究所 副研究员/硕导
中国科学院长春光学精密机械与物理研究所 助理研究员