扫描手机二维码

欢迎您的访问
您是第 位访客

最后更新时间 : ..

  • !tvu.isPriviewMode()true showstate0
    马志超
    !tvu.isPriviewMode()true showstate0
    ( 副教授 )

    !tvu.isPriviewMode()true showstate0
    的个人主页 http://teachers.jlu.edu.cn/Mazhichao/zh_CN/index.htm

    !tvu.isPriviewMode()true showstate0
  •   副教授   博士生导师
  • 主要任职 : 吉林省材料服役性能测试产业公共技术研发中心副主任
个人简介

马志超,男,汉族,1986年10月生,2013 年提前毕业,获吉林大学机械制造及自动化专业博士学位,2015年被破格聘任为副教授,同年进入工程仿生教育部重点实验室从事博士后研究,2018年通过破格教授评审,同年被遴选为博士生导师。主要从事原位力学测试技术和仿生科学与工程方面的研究。现任吉林省材料服役性能测试产业公共技术研发中心副主任,是国际仿生工程学会(ISBE)会员、中国机械工程学会高级会员、中国仪器仪表学会试验机分会委员。主持国家自然科学基金面上、青年基金、重点项目课题、国家重大科学仪器设备开发专项子课题、国家重点研发计划子课题、全国博士后基金特别资助、吉林省重点科技研发项目等,合同经费近500 万元。发表SCI 收录论文 近50 篇,合著原位力学测试领域的英文专著 2 部,成果被国际科技新闻网站 Vertical News、Space Mart 等专题报道,被加拿大工程院院士 Y. Sun、美国科学促进会会士 P. Ferreira、英国皇家工程院外籍院士 S. Fatikow、美国工程院院士 Kumar等学者正面引用和好评;申请美国、欧洲发明专利 3 件,授权中国发明专利近 30 件,4 件专利在国机集团等企业转化实施;制定原位力学测试仪器的机械行业标准 2 项。负责起草《大百科全书》原位力学测试相关词条。入选2017-2019年度中国科协青年人才托举工程(当年全国278人)、获教育部技术发明一等奖(排名第二)、吉林省技术发明一等奖(排名第二)、2017年中国仪器仪表学会青年科技人才奖(当年全国4人),入选国家优秀青年科学基金人才培育计划和优秀青年教师培养计划(重点阶段)。2019年初,受吉林大学“培英工程计划”支持,将赴麻省理工学院开展合作研究。


       一、主要学术贡献、重要创新成果:

(1)发明了单载荷和复合载荷系列化原位测试原理与技术。揭示了材料微观形貌表征、三维应变分析和瞬态弹性波等对监测分析材料力学行为在同步性与时空分辨率上的作用机制,发明了17种原位测试原理与技术,实现了对载荷作用下材料变形损伤机制与性能演化规律的多参量精准测试与数据融合分析。

(2)揭示了复合载荷对材料力学行为的作用机制,提出了拉-弯、拉-扭等复合载荷模式的耦合加载/解耦理论,建立了参考映射法和六面体挠曲法等7种仪器精度校准理论方法,解决了微小仪器在大载荷、耦合加载条件下高精度解耦测量的技术难题。

(3)研制了基于观测微区可控的单载荷和复合载荷模式系列化材料微观力学性能原位测试仪器,可有效获取复杂载荷作用下材料的变形损伤机制与性能演化规律,为材料的研发制造工艺改进和质量严控提供测试仪器。授权的4件专利作价1831.8万元,已转化实施。仪器已应用于10余家单位,协助建成了国内首条原位测试仪器生产线。提升了材料及其制品服役中的稳定性、耐久性和可靠性,为我国核工业、航空航天等领域关键材料复杂服役条件下的微观力学性能测试保障提供了支撑。

《Mat Sci Eng A-Struct》编委、AAAS会士、加拿大瑞尔森大学D.L.Chen教授称:发现了循环应力-应变响应对疲劳抗力特性的重要性。德国马格德堡大学A. Pisarevskiy教授称:研制的小型化仪器具有快速响应和高灵敏度。中科院物理所(凝聚态物理国家实验室)顾长志所长称:验证了杨氏模量与纳米级尺寸变化间的规律。国家纳米技术工程研究中心主任、上海交通大学何丹农教授称:研制了可与原子力显微镜、扫电镜和透射电镜集成的原位拉伸/压缩测试仪。长江学者亢战教授称:文献首次提出了基于压电驱动的力热耦合原位疲劳原理。轴线非对中仪器精度校准理论的论文,被原位力学测试领域国际著名学者、《MRS Commum》编委、美国伯顿奖获得者、加州大学伯克利分校A.M. Minor教授引述称:文献表明单晶钼纤维的轴线非对中将导致计算应力下降。北京大学方岱宁院士称:由于尺寸效应和附加载荷,随着压痕测试中压入深度的降低,材料的测试硬度有所上升。《Fatigue Fract Eng M》编委C. Xu教授称:首次提出了原位拉伸-疲劳装置,建立了实际应变与测量应变的非线性关系,实现了对位移的精准校正。参与的研究工作被中华人民共和国中央人民政府网专题报道称:吉林大学突破了仪器精度校准的技术瓶颈,实现了对材料力学参数、变形损伤机制与微观组织演化多参量原位测试,实现了我国自主知识产权原位测试仪器的突破,丰富了现有材料力学性能测试理论、技术与标准体系。


 二、主要奖励荣誉:

(1)入选2017-2019年度中国科协青年人才托举工程(当年全国278人)

(2)获教育部技术发明一等奖(排名第二)

(3)吉林省技术发明一等奖(排名第二)

(4)2017年中国仪器仪表学会青年科技人才奖(当年全国4人)

(5)2015、2017年中国有色金属科技论文奖

(6)入选吉林大学“培英工程计划”

(7)入选吉林大学国家优秀青年科学基金人才培育计划

(8)入选优秀青年教师培养计划(重点阶段)

(9)吉林大学优秀博士后

(10)吉林大学优秀博士学位论文


三、主要个人经历、研究方向、主持项目与学术成果:

q  Personal Information

§  Name:           Zhichao Ma

§  Date of Birthday:  13/10/1986

§  Country:         People's Republic of China

§  Email:           zcma@jlu.edu.cn

§  Phone:           86-18943606150

§  Current job:      Professor , Jilin University

§  Address:         Renmin Street 5988, Jilin University, Changchun, 130025, China

q  Academic Background

§  2009/09-2013/12, School of Mechanical Sci & Eng, Jilin University, Doctoral Student

(Graduate in advance)

§  2005/09-2009/07, School of Mechanical Sci & Eng, Jilin University, Undergraduate Student

q  Work Experience

§  2018/06-Current, School of Mechanical Sci & Eng, Jilin University,

Bionic Engineering Key Laboratory, Ministry of Education

Nominated as Professor by President

§  2017/06-Current, Secretary of the Academician Luquan Ren, Jilin University

§  2015/10-Current, Jilin Province Material Service Performance Testing Center, Executive Director

§  2015/09-Current, School of Mechanical Sci & Eng, Jilin University, Associate Professor

(Accelerated Promotion)

§  2015/04-2016/05, Bionic Engineering Key Laboratory, Ministry of Education, Postdoctoral Fellow

§  2014/06-2015/09, School of Mechanical Sci & Eng, Jilin University, Lecturer

q  Research Interests

§   In situ Mechanical Properties Testing of Materials

§   Mechanics of Materials at Micro/Nano scale

§   Multi Physical Field Coupling Driving/Testing

§   Bionic Materials

q  Scientific Research Projects as Leader

§  Youth Talent Lifting Project, China Science and Technology Association, 450, 000 CNY

 (A total of 200 people under 32 years old)

§  Decoupling of constitutive relation on basis of combined stresses----Special Project for Development of National Major Scientific Instruments, 600, 000 CNY

§  Design principle and mathematical model of biomimetic microstructural array----National Natural Science Foundation of China, 450, 000 CNY

§   Bionic construction of high entropy alloy artificial joints based on in-situ testing of failure mechanism----National Natural Science Foundation of China, 600, 000 CNY

§   In-situ testing system of materials under extreme environment----Sub-project of National Key R&D Program, 1, 000, 000 CNY

§  Research on novel in situ test technologies of combined stresses fatigue properties of materials under variable temperature conditions----National Natural Science Foundation of China, 264, 000 CNY

§  In situ materials testing technology and equipment development for mechanical properties of high temperature and high frequency----Key Research and Development Projects in Jilin Province, 1, 000, 000 CNY

§  Coupling construction of bionic artificial joints ---- Key Research and Development Projects in Jilin Province, 700, 000 CNY

§  Service performance evolution and coupled bionic design of high entropy alloy coating----Special Funding for the Post-Doctoral Science Fund of China, 150, 000 CNY

§  National Excellent Youth Science Fund Cultivation Plan of Jilin University, 100, 000 CNY

q  Awards and Prizes

§  Science and Technology Award by Ministry of Education of China, 1st Prize, 2018, Second author

§  Youth Talent Lifting Project by China Science and Technology Association, 2017

§  Youth Science and Technology Award by China Instruments and Control Society, 2017

§  Technology Invention Award by Jilin Province, 1st Prize, 2016, Second author

§  Candidate of “Outstanding Young Science Foundation of China” of Jilin University, 2016

§  China Nonferrous Metal Paper Award of Science and Technology, 2015, First author

§  Natural Science Academic Achievement of Jilin Province, China, 2015, First author

§  Outstanding Postdoctoral Fellow of Jilin University, 2015

§  Outstanding Doctoral Dissertation of Jilin University, 2014

§  National Scholarship for Doctoral Student, 2012 and 2013

§  National Student Competition of Academic Science and Technology Works, 2011, First author

§  Outstanding Paper Award of National Doctoral Student Conference, 2011, First author

q  Journal Reviewer

§  Advanced Engineering Materials

§  Materials & Design

§  Measurement Science & Technology

§  Journal of Alloys and Compounds

§  Review of Scientific Instruments

§  Materials

§  Experimental Techniques

§  Science China Technological Sciences

§  Nanoscale Research Letters

§  International Tribology

§  Mechanical Systems and Signal Processing

§  Sensor and Actuator A

q  Memberships of Academic Societies

§  Member of International Society of Bionic Engineering

§  Senior Member of Chinese Mechanical Engineering Society

§  Invited Reviewer of National Natural Science Foundation of China

§  Senior Member of Nonferrous Metals Society of China

§  Committee Member of Test Machine Branch, China Instruments and Control Society

§  Member of Youth Science and Technology Workers Association of Jilin University

q  Established Industrial Standards

[1]   Ma, Z. C., Zhao, H. W., et al. (2016): In situ testing systems of tensile-bend combined mechanical properties for solid materials. (Chinese Industrial Standard, JB/T 13224-2017)

[2]   Zhao, H. W., Zhang, J. W., Dong, J. S., Wang, X. Z., Xu, Z. G., Zhu, M., Ren, L. Q., Ma, Z. C. (2015): In situ tensile testing instruments for solid materials-Technical specification. (Chinese Industrial Standard, No JB/T 12720-2016)

q  Monograph

[1]   Zhao, H. W., Huang, H., Ji, J.B., Ma, Z. C. (2012): Design and analysis of key components in the nanoindentation and scratch test device, as a chapter published in book "Human Musculoskeletal Biomechanics", InTech OPEN ACCESS Publisher. 185-208.

[2]   Zhao, H. W., Huang, H., Fan, Z. Q., Yang, Z. J., Ma, Z. C. (2012): Design, Analysis and Experiments of a Novel in situ SEM Indentation Device, as a chapter published in book "Nanoindentation in Materials Science", InTech OPEN ACCESS Publisher. 287-308.

[3]   Ma, Z. C., Zhao, H. W., et al. Encyclopedia (Third Edition), In situ tension entry, 2018, Chinese Encyclopedia Press.

q  Publications

[1]   Ma, Z. C., *Zhao, H. W., Ren. L. Q., et al. (2019): Fatigue device driven by a three degree of freedom tripodal piezoelectric actuator. Review of Scientific Instruments, Accepted.

[2]   Ma, Z. C., *Zhao, H. W., Ren. L. Q., et al. (2019): Static and cyclic mechanical behaviours and fracture mechanisms of Zr-based metallic glass at elevated temperatures. Philosophical Magazine, Published Online.

[3]   Ma, Z. C., *Zhao, H. W., Ren. L. Q., et al. (2019): Novel crystallization behaviors of Zr-based metallic glass under thermo-mechanical coupled fatigue loading condition. Acta Metallurgica SinicaPublished Online.

[4]   Ma, Z. C., *Zhao, H. W., Ren. L. Q., et al. (2018): Evaluation of nanoindentation load-depth curve of MEMS bridge structures by calculating the critical elastic-plastic bending deflections. Applied Surface Science, 434, 1-10.

[5]   Zhou, L. M., Ren, S. H., Liu, C. Y., *Ma, Z. C. (2019): A valid inhomogeneous cell-based smoothed finite element model for the transient characteristics of functionally graded magneto-electro-elastic structures. Composite Structures, 208, 298-313.

[6]   Liu, C. Y., *Ma, Z. C., Ren. L. Q., et al. (2018): Correction method for mechanical performance testing instrument with Tension–torsion coupling loading. Measurement Science & Technology, Published Online.

[7]   Ma, Z. C., *Zhao, H. W., Ren. L. Q., et al. (2018): Motor-piezoelectricity coupling driven high temperature fatigue device. Review of Scientific Instruments, 89, 016102.

[8]   Liu, C. Y., H.W. Zhao*, Ma, Z. C., et al. (2017): Novel instrument for characterizing comprehensive physical properties under multimechanical loads and multi-physical field coupling conditions. Review of Scientific Instruments, 89, 025112.

[9]   Zhou, M.X., Fan, Z.Q., Ma, Z. C., et al. (2017): Effects of Flotage on Immersion Indentation Results of Bone Tissue: An Investigation by Finite Element Analysis, Advances in Materials Science and Engineering, 2017, 4569351.

[10]  Zhou, M.X., Fan, Z.Q., Ma, Z. C., et al. (2017): Design and Experimental Research of a Novel Stick-Slip Type Piezoelectric Actuator, Micromachines, 8, 150.

[11]  Zhong, Y. X., Zhao, H. W., Ma, Z. C., et al. (2017): A study on the effect of double-tip inclined angle on micro-scratching process using smooth particle hydrodynamic method, Advances in Mechanical Engineering. 9, 1-7.

[12]   Ma, Z. C., *Zhao, H. W., Ren. L. Q., et al. (2016): Elastic-plastic bending properties of an AZ31B magnesium alloy based on persistent tensile preloads. Journal of Alloys and Compounds, 708 (2017) 594-599

[13]   Ma, Z. C., *Zhao, H. W., Ren. L. Q., et al. (2016): Thermo-mechanical coupled in situ fatigue device driven by piezoelectric actuator. Precision Engineering, 46, 349-359.

[14]  Ma, Z. C., *Zhao, H. W., Ren. L. Q., et al. (2016): Fracture criterion on basis of uniformity of plastic work of polycrystalline ductile materials under various stress states. Acta Mechanica, 227, 2053-2059.

[15]  Zhao, H. W., Zhong, Y. X., *Ma, Z. C. (2016): Effects of indentation depth on micro hardness and scratch behavior. Journal of Alloys and Compounds, 680, 105-108.

[16] Sun, X. D., *Zhao, H. W., Yu, Y., Zhang, S. Z., Ma, Z. C., et al. (2016): Variations of mechanical property of out circumferential lamellae in cortical bone. AIP Advances, 6, 115116.

[17]  Ma, Z. C., *Zhao, H. W., Ren. L. Q., et al. (2016): Measurement error of Young’s modulus considering the gravity and thermal expansion of thin films. Measurement Science & Technology, 27, 127001.

[18]  Hou, P. L., *Zhao, H. W., Ma, Z. C., et al. (2016): Influence of punch radius on elastic modulus of three-point bending tests. Advances in Mechanical Engineering. 8, 1-8.

[19]  Ma, Z. C., *Zhao, H. W., et al. (2016): Method for determining of true stress of cross-shaped specimens subjected to biaxial tensile loads. Instruments and Experimental Techniques, 59, 287-293.

[20]  Ma, Z. C., *Zhao, H. W., Ren. L. Q., et al. (2015): Evaluation of equivalent accumulation area of internal defects based on statistical law of yield loads. Journal of Alloys and Compounds, 649, 500-504.

[21]  Ma, Z. C., *Zhao, H. W., et al. (2015): Deformation behavior of micro-indentation defects under uniaxial and biaxial loads. Review of Scientific Instruments, 86, 095112.

[22]  Ma, Z. C., *Zhao, H. W., et al. (2015): A novel tensile device for in situ scanning electron microscope mechanical testing. Experimental Techniques, 39, 3-11.

[23]  Ma, Z. C., *Zhao, H. W., et al. (2015): Modular correction method of bending elastic modulus based on sliding behavior of contact point. Measurement Science & Technology, 26, 087001.

[24]  Ma, Z. C., *Zhao, H. W., et al. (2015): Critical Fracture Behavior of a Cu/Al Composite Laminate via the Observation of Scanning Electron Microscope. Materials Transactions, 56, 813-818.

[25]  Ma, Z. C., *Zhao, H. W., et al. (2015): Prediction Method of Low Cyclic Stress-Strain Curve of Structural Materials. Materials Transactions, 56, 1067-1071.

[26]  Ma, Z. C., *Zhao, H. W., et al. (2015): Effects of zinc on the static and dynamic mechanical properties of copper-zinc alloy. Journal of Central South University, 22, 2440-2445.

[27]  Li, J. P., Zhao, H. W., Qu, X. T., Qu, H., Zhou, X. Q., Fan, Z. Q., Ma, Z. C. et al. (2015): Development of a compact 2-DOF precision piezoelectric positioning platform based on inchworm principle. Sensors and Actuators A, 222, 87-95.

[28]  Ma, Z. C., *Zhao, H. W., et al. (2014): Influences of tensile pre-strain and bending pre-deflection on bending and tensile behaviors of an extruded AZ31B magnesium alloy. Materials & Design, 64, 566-572.

[29]  Ma, Z. C., *Zhao, H. W., et al. (2014): Decomposition method based on a modified Arcan fixture and its application in an in situ combined load tester. Measurement Science & Technology, (2014) 25, 127001.

[30]  Ma, Z. C., *Zhao, H. W., et al. (2014): Effects of 2D misalignment on tensile results and corresponding correction methods to obtain the true tress-train curve. Measurement Science & Technology, 25, 115011

[31]  Zhang, L., *Zhao, H. W., Ma, Z. C., et al. (2014): Molecular dynamics simulation of linearly varying cutting depth of single point diamond turning on Cu (111). International Journal of Nanomanufacturing, 10, 33-357.

[32]  Zhang, L., *Zhao, H. W., Yang, Y. H., Huang, H., Ma, Z. C., et al. (2014): Evaluation of Repeated Single Point Diamond Turning on the Deformation Behavior of Monocrystalline Silicon via Molecular Dynamic Simulations. Applied Physics A, 116, 141-150.

[33]  Zhang, L., *Zhao, H. W., Guo, W. C., Ma, Z. C., et al. (2014): Quasicontinuum Analysis of the Effect of Tool Geometry on Nanometric Cutting of Single Crystal Copper. Optik, 125, 682-687.

[34]  Ma, Z. C., *Zhao, H. W., et al. (2013): Novel in situ device for investigating the tensile and fatigue behaviors of bulk materials. Review of Scientific Instruments, 84, 045104.

[35]  Ma, Z. C., *Zhao, H. W., et al. (2013): Note: Investigation on the influences of gripping methods on elastic modulus by a miniature tensile device and in situ verification. Review of Scientific Instruments, 84, 066102.

[36]  Ma, Z. C., *Zhao, H. W., et al. (2013): Novel correction methods on a miniature tensile device based on a modular non-standard layout. Measurement Science &Technology, 24, 085901.

[37]  Zhang, L., *Zhao, H. W., Huang, H., Ma, Z. C., et al. (2013): The evolution of machined-induced surface of single crystal FCC copper via nanoindentation. Nanoscale Research Letters, 8, 211.

[38]  Huang, H., *Zhao, H. W., Fan, Z. Q., Zhang, H., Ma, Z. C., et al. (2013): Analysis and experiments of a novel and compact 3-DOF precision positioning platform. Journal of Mechanical Science and Technology, 27, 1-11.

[39]  Zhang, L., *Zhao, H. W., Ma, Z. C., et al. (2013): A Study on Size Effect of Indenter in Nanoindentation via Molecular Dynamics Simulation. Key Engineering Materials, 562-565, 802-808.

[40]  Ma, Z. C., *Zhao, H. W., et al. (2012): A miniaturized in situ tensile platform under microscope. Telkomnika, 10, 524-530.

[41]  Zhang, L., *Zhao, H. W., Ma, Z. C., et al. (2012): A study on phase transformation of monocrystalline silicon due to ultraprecision polishing by molecular dynamics simulation. AIP ADVANCES, 2, 042116.

[42]  Huang, H., *Zhao, H. W., Ma, Z. C., et al. (2012): Design and analysis of the precision-driven unit for nanoindentation and scratch test. Journal of Manufacturing Systems, 31, 76-81.

[43]  Shi, C. L., *Zhao, H. W., Huang, H., Wan, S. G., Ma Z. C., et al. (2013): Effects of probe tilt on nanoscratch results: An investigation by finite element analysis, Tribology International, 60, 64-69.

[44]  Huang, H., *Zhao, H. W., Zhang, Z. Y., Yang, Z. J., Ma, Z. C. (2012): Influences of Sample Preparation on Nanoindentation Behavior of a Zr-Based Bulk Metallic Glass, Materials, 5, 1033-1039.

[45]  Huang, H., *Zhao, H. W., Yang, Z. J., Mi, J., Fan, Z. Q, Wan, S. G, Shi, C. L., Ma, Z. C. (2012): A novel driving principle by means of the parasitic motion of the microgripper and its preliminary application in the design of the linear actuator, Review of Scientific Instruments , 83, 055002.

[46]  Huang, Hu., *Zhao, H. W., Mi, J., Yang, J., Wan, S. G., Xu, L. X., Ma, Z. C. (2012): A novel and compact nanoindentation device for in situ nanoindentation tests inside the scanning electron microscope, AIP ADVANCES , 2, 012104.

[47]  Huang, H., *Zhao, H. W., Yang, Z. H., Fan, Z. Q., Wan, S. G, Shi, C. L., Ma, Z. C. (2012): Design and Analysis of a Compact Precision Positioning Platform Integrating Strain Gauges and the Piezoactuator, Sensors , 12, 9697-9710.

[48]  Huang, H., *Zhao, H. W., Mi, J., Yang, J., Wan, S. G., Yang, Z. J., Yan, J. W., Ma, Z. C. et al. (2011): Experimental research on a modular miniaturization nanoindentation device, Review of Scientific Instruments , 82(9), 095101.

[49]  Ma, Z. C., *Ren. L. Q., et al. (2018): Miniaturized piezoelectric driven fatigue device inside SEM. Academic Conference on measurement control and Metrology Technology at Guangzhou, China, September 2018.

[50]  Ma, Z. C., *Zhao, H. W., et al. (2012): Calibration methods based on stress-strain curve for a novel tensile platform inside SEM. Proc. 10th Int. Conf. on Frontiers of Design and Manufacturing at Chongqing, China, July 2012.

[51]  Ma, Z. C., *Zhao, H. W., et al. (2012): Analysis and experiment of a novel miniature driven unit for in situ fatigue test based on tensile preload. Proc. 10th Int. Conf. on Frontiers of Design and Manufacturing at Chongqing, China, July 2012.

[52]  Huang, H., Shi, C. L., *Zhao, H. W., Ma, Z. C. (2012): An Integrated Nanoindentation Module: Design and Experiments. Proc. 10th Int. Conf. on Frontiers of Design and Manufacturing at Chongqing, China, July 2012.

[53]  Zhang, L., *Zhao, H. W., Huang, H., Ma, Z. C., (2012): Effects of the Deformation of Indenter in Nanoindentation–Molecular Dynamics Simulation. Proc. 10th Int. Conf. on Frontiers of Design and Manufacturing at Chongqing, China, July 2012.

[54]  Huang, H., *Zhao, H. W., Ma, Z. C., et al. (2011): Development of a novel nanoindentation device for in situ test in SEM, 2nd Nano today conference at Hawaii USA, 2011.

[55]  Ma, Z. C., *Zhao, H. W., et al. (2011): In situ tensile test platform design and experimental research under microscopes. 9th National Doctoral Student Conference at Changsha, China, September 2011.

[56]  Ma, Z. C., Hu, L. L., *Zhao, H. W., et al. (2010): Theoretical and experimental research on machine tool servo system for ultra-precision position compensation on CNC lathe. Proceedings of SPIE, (2010) 7544.

[57]  Ma, Z. C., *Zhao, H. W., Ren, L. Q. (2017): Motor-piezoelectricity coupling driven high temperature fatigue device based on adjustable monotonic and cyclic loading. 2017 Development Forum of test machine and Test Technology. 12-21.

q  Patents

[1]   Ma, Z. C.; Zhao, H. W., et al.: In situ mechanical testing method and system for materials subjected to static and dynamic load spectrum. U. S. patent, WO2018006504

[2]   Ma, Z. C.; Zhao, H. W., et al.: Macroscopic/microscopic rotating driving platform based on biomimetic tentacle and thermal expansion. (Authorized Chinese invention patent, Patent No 201610279674.9)

[3]   Ma, Z. C.; Zhao, H. W., et al.: Fatigue performance testing device of microstructure under combined stresses and high temperature. (Authorized Chinese invention patent, Patent No 201520070031.4)

[4]   Ma, Z. C.; et al.: Flexible driving bionic massage manipulator based on pneumatic artificial muscle. Submitted as: Chinese invention patent (Application No 201810181576.0, application date 06.03.2018)

[5]   Ma, Z. C.; et al.: Electromagnetic experimental device for measuring impact mechanical properties of biomaterials. Submitted as: Chinese invention patent (Application No 201810181474.9, application date 06.03.2018)

[6]   Ma, Z. C.; et al.: Electromechanical thermal coupling stress corrosion in-situ fatigue test device. Submitted as: Chinese invention patent (Application No 201810077054.6, application date 20.01.2018)

[7]   Ma, Z. C.; et al.: Piezoelectric driven three jaw bionic micro size clamping mechanism based on flexure hinge. Submitted as: Chinese invention patent (Application No 201710733966.X, application date 24.08.2017)

[8]   Ma, Z. C.; et al.: Multi stage static and dynamic coupling mechanical loading device for high frequency fatigue test. Submitted as: Chinese invention patent (Application No 201710734208.X, application date 24.08.2017)

[9]   Ma, Z. C.; et al.: High temperature heating chamber for in-situ optical monitoring and synchrotron radiation. Submitted as: Chinese invention patent (Application No 201710559704.6, application date 11.07.2017)

[10] Ma, Z. C.; et al.: Bionic construction method of high entropy alloy artificial joint based on in-situ test. Submitted as: Chinese invention patent (Application No 201710559630.6, application date 11.07.2017)

[11] Ma, Z. C.; et al.: Calibration method of micro bridge indentation load depth curve for MEMS. Submitted as: Chinese invention patent (Application No 201610914688.3, application date 15.03.2017)

[12]  Ma, Z. C.; et al.: In situ testing system and method for mechanical properties of materials under static and dynamic load spectrum. Submitted as: Chinese invention patent (Application No 201610533810.2, application date 08.07.2016)

[13] Qian, Q. M.; Gao, Y. X.; Ma, Z. C.; et al.: Automatic dispensing device on basis of macro/micro driving and accuracy control. Submitted as: Chinese invention patent (Application No 201610271551.0, application date 29.04.2016)

[14]  Zhao, H. W.; Liu, C. Y.; Ma, Z. C.; et al.: In situ testing instrument for testing mechanical-electrical-magnetic coupling properties of materials under combined loads. Submitted as: Euro and U. S. patent (Submitted via PTC, Application No 201510973083.7 application date 23.12.2015)

[15] Dong, J. S.; Zhou, Y. C.; Ma, Z. C.; et al.: Miniature and precise nanoindentation and nanoscratch testing device. Submitted as: Chinese invention patent (Application No 201520556793.5, application date 29.07.2015)

[16] Zhao, H. W.; Shi, C. L.; Liu, H. D,; Lu, S.; Huang, H.; Tian, Y.; Ma, Z. C.; et al. (2015): Precise in situ torsional platform for materials’ performance testing. (Authorized Chinese invention patent, Patent No 201310172164.8)

[17] Zhao, H. W.; Cheng, H. B.; Shao, M. K,; Zhang, P.; Ma, Z. C.; et al. (2015): In situ three-point bending platform for materials’ performance testing on basis of adjustable environment temperature. (Authorized Chinese invention patent, Patent No 201310344421.1)

[18] Li, H. L.; Zhao, H. W.; Ma, Z. C.; et al. (2015): A kind of testing instrument of materials’ properties. (Authorized Chinese invention patent, Patent No 201310381388.X)

[19] Ma, Z. C.; Zhao, H. W., et al. (2015): Fatigue performance testing device of microstructure under combined stresses and high temperature. (Authorized Chinese invention patent, Patent No 201520070031.4)

[20] Ma, Z. C.; Zhao, H. W., et al. (2015): In situ static and dynamic performance biaxial testing platform under service temperature. (Authorized Chinese patent for utility model, Patent No 201420790732.0)

[21] Ma, Z. C.; Zhao, H. W., et al. (2015): Machining equipment of aspherical concave lens based on adjustable curvature radius. (Authorized Chinese invention patent, Patent No 201420790777.8)

[22] Ma, Z. C.; Zhao, H. W., et al. (2014): Fatigue mechanical performance testing device of materials driven by piezoelectric actuator. (Authorized Chinese invention patent, Patent No 201210426539.4)

[23] Zhao, H. W.; Li, J. P.; Ren, L. Q.; Qu, H.; Ma, Z. C.; et al. (2014): Bionic multi-degrees of freedom actuator at micro/nano scale under microscope. (Authorized Chinese invention patent, Patent No 201210226883.9)

[24] Zhao, H. W.; Ren, L. Q.; Li, J. P.; Huang, H.; Zhang, P. F.; Hu, X. L.; Cheng, H. B.; Fang, D. N.; Ma, Z. C.; et al.: Micromechanical performance in situ test instrument for multi-load and multi-physical field coupling material. Submitted as: Euro and U. S. patent (NO PTC/CN2014/072805, application date 03.03.2014)

[25] Zhao, H. W.; Cheng, H. B.; Ma, Z. C.; et al. (2014): Miniature mechanical properties testing device based on tensile-bending combined loading mode. (Authorized Chinese invention patent, Patent No 201210152073.3)

[26] Zhao, H. W.; Ma, Z. C.; et al. (2013): Cross-scale in situ combined loading testing device at micro/nano scale. (Authorized Chinese invention patent, Patent No 201110109253.9)

[27] Zhao, H. W.; Ma, Z. C.; et al. (2013): Material mechanical properties testing device on basis on tensile/compressive and bending combined loading under microscope. (Authorized Chinese invention patent, Patent No 201110351382.9)

[28] Zhao, H. W.; Ma, Z. C.; et al. (2013): In situ high-frequency fatigue mechanical properties testing device based on tensile/compressive mode under scanning electron microscope. (Authorized Chinese invention patent, Patent No 201110305113.9)

[29] Zhao, H. W.; Ma, Z. C.; et al. (2013): In situ torsional mechanical properties testing device at micro-radian scale under scanning electron microscope. (Authorized Chinese invention patent, Patent No 201110305111.X)

[30] Zhao, H. W.; Ma, Z. C.; et al. (2013): In situ tensile/compressive testing device based on quasi-state loading under scanning electron microscope. (Authorized Chinese invention patent, Patent No 201110305112.4)

[31] Zhao, H. W.; Hu, X. L.; Ma, Z. C.; et al. (2013): Cross-scale in situ three-point bending testing device at micro/nano scale. (Authorized Chinese invention patent, Patent No 201110172197.3)

[32] Zhao, H. W.; Ma, Z. C.; et al. (2013): Biaxial tensile/compressive mechanical testing device under scanning electron microscope. (Authorized Chinese patent for utility model, Patent No 201220152042.3)

[33] Zhao, H. W.; Yuan, Y. K.; Li, S.; Zou, Q.; Ma, Z. C.; et al. (2013): In situ nanoindentation device on basis of adjustable tensile and bending preloads. (Authorized Chinese invention patent, Patent No 201310235996.X)

[34]  Zhao, H. W.; Huang, H.; Yuan, Y. K.; Mi, J.; Yang, J.; Wan, S. G.; Ma, Z. C.; et al. (2013): Miniature nanoindentation testing device. (Authorized Chinese invention patent, Patent No 201110097964.9)

[35]  Zhao, H. W.; Huang, H.; Shi, C. L.; Hu, L. L.; Yang, J.; Wan, S. G.; Ma, Z. C.; et al. (2013): In situ nanoindentation testing device at micro/nano scale on basis of double displacement detection. (Authorized Chinese invention patent, Patent No 201110108995.X)

[36]  Zhao, H. W.; Zhang, L.; Shi, C. L.; Hu, X. L.; Ma, Z. C.; et al. (2013): Cross-scale in situ tensile/compressive testing device at micro/nano scale under microscope driven by hydraulic actuator. (Authorized Chinese invention patent, Patent No 201110353413.4)

[37] Zhao, H. W.; Zhang, L.; Huang, Hu.; Hu, X. L.; Shi, C. L.; Ma, Z. C.; et al. (2013): Cross-scale in situ three/four point testing device at micro/nano scale under microscope. (Authorized Chinese invention patent, Patent No 201110353825.8)

[38]  Zhao, H. W.; Ma, Z. C.; et al. (2012): Mechanical testing device of materials on basis of combined loading mode driven by hydraulic actuator. (Authorized Chinese patent for utility model, Patent No 201220055669.7)

[39]  Zhao, H. W.; Ma, Z. C.; et al. (2012): Cross-scale in situ tensile/ compressive testing device at micro/nano scale. (Authorized Chinese invention patent, Patent No 201110082328.9)

[40]  Zhao, H. W.; Ma, Z. C.; et al. (2011): In situ tensile/compressive testing device under scanning electron microscope driven by hydraulic actuator. (Authorized Chinese patent for utility model, Patent No 201120513835.9)

[41]  Zhao, H. W.; Ma, Z. C.; et al. (2011): Servo compensation drive system of cutting tool at micro/nano level. (Authorized Chinese patent for utility model, Patent No 201220144470.1)

 

 

 

                                                         材料材料服役性能测试原理、技术与装备


教育经历
  • [1] 2009.9 -- 2013.12

    吉林大学       机械工程      硕博连读(提前毕业)

  • [2] 2005.9 -- 2009.7

    吉林大学       机械工程      本科生

工作经历
  • [1] 2014.1 -- 2014.6

    中国电子科技集团公司

  • [2] 2014.6 -- 至今

    吉林大学机械科学与工程学院      2014/06-2015/09 讲师
    2015/04-至今 工程仿生教育部重点实验室博士后
    2015/09-2018/12 副教授(破格)
    2018/11至今 博士生导师
    2018/12至今 教授(破格,公示,通过学术委员会评审)

社会兼职
  • [1]

    国际仿生工程学会会员

  • [2]

    中国机械工程学会高级会员

  • [3]

    中国仪器仪表学会试验机分会会员

  • [4]

    国家自然科学基金委员会项目通讯评阅人评阅人

  • [5]

    中国有色金属学会会员

  • [6]

    吉林省材料服役性能测试产业公共技术研发中心副主任

  • [7]

    吉林大学青年科技工作者协会会员

研究方向
  • [1] 材料服役性能测试技术与装备
  • [2] 仿生材料设计与制备
  • [3] 极端材料材料性能
  • [4] 多物理场耦合驱动
教师其他联系方式
  • [1] QQ :
  • [2] 邮箱 :
  • [3] 电话 :
地址:吉林省长春市前进大街2699号
信息管理和技术维护:吉林大学大数据和网络管理中心  
版权所有 2017 吉林大学 吉ICP备06002985号-1